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2. Prove that, if ABC is an acute-angled triangle, then
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Solution by Arkady Alt, San Jose, CA, USA, modified by the editor.
Using the formulas 4m? = 2(b? + ¢?) — a? and

2 be(b+c+a)(b+c—a) _ 4bes(s — a)
Wa = b+ c)? ~ T (b+o? '
it can be shown that 42 )
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[Ed.: We omit Alt’s proof of (1) because the same argument was given
recently by Alt in his (featured) solution to problem 2963 [2005 : 350-351],
to which we refer the reader. |
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Substituting w, =
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Ma = b+c be )

Letting K denote the area of AABC,we have K = /s(s — a)(s — b)(s — ¢)
(Heron’'s formula). We will also use the formulas abe = 4RK = 4Rrs.
We have
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as required.



